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ABSTRACT 

Using model predictive control for energy management systems is becoming more popular. These 

systems control the building performance based on a forecast of the control based on a building 

model. Uncertainties in building operation are a major issue in the use of model predictive control, as 

they decrease prognosis precision. This includes user’s varying thermal requirements. The aim of this 

paper is to develop a comfort temperature predictor for individually controllable offices based on the 

weather conditions using machine learning. For this purpose, the fundamentals of indoor comfort and 

machine learning are presented. Recent trends in research on machine learning in buildings are 

reviewed. The methodology for developing and testing the comfort temperature predictor is explained. 

Afterwards the results of forecasting the comfort temperature and the energetic impact of the predictor 

are described.  

The results show that supervised learning artificial neural networks and Gaussian Process Regression 

tools can predict comfort temperatures based on weather conditions with sufficient precision, better 

than the currently common temperature setpoints. Roughly one year of data is required to reach this 

performance. Real-time learning with reinforcement learning using artificial neural network value 

function approximation and sample reuse needs 50 days of learning to reach good precision. 

Supervised learning can reduce the heating load and reduce overheating, while there is no positive 

impact on the cooling load with either tool. The paper closes with a review of the tool and an outlook 

towards its improvements and applications 
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1. Introduction 

The built environment plays a significant role in modern societies, as humans in western countries 

spend 90 % of their time indoors [1]. Indoor comfort can have an important impact on someone’s well-

being, not only short-term while occupying a specific building, but also in the long-run. Indoor comfort 

is a very individual state. Consequently, a trend towards more individual control options in buildings 

can be observed. This does entail an increase in control uncertainties, as individual behaviour is very 

difficult to predict [2,3].  

Over the last years machine learning has found its way into a broad field of applications. In buildings, 

its main application has been in load prediction, control optimization, and occupation and comfort 

prediction. Commercial implementation however is still scarce [4]. Uncertainties in building operation, 

including varying thermal requirements by users, are a major issue in the use of model predictive 

control, as they decrease prognosis precision. The basic concept of using predictions to effectively 
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control HVAC systems gets undermined by spontaneous changes in user requirements. The Predicted 

Mean Vote (PMV) developed by Fanger can be used to predict the comfort demand of groups. It is 

however not suited to predict individual demands, and some of the data required is difficult to measure 

[3]. The aim of this paper is to develop a comfort temperature predictor for individually controllable 

offices based on the environmental weather conditions using machine learning. The feasibility of 

different supervised and reinforcement learning tools is tested concerning precision and amount of 

data required, and the impact on the energy consumption is evaluated.  

2. Fundamentals 

2.1 Indoor Thermal Comfort  

Thermal comfort is achieved when a human does not feel the need to change the state of the thermal 

environment or to adapt to it. This condition is reached when the heat balance of a human is neutral, 

i.e. the heat produced by metabolism is equal to the heat dissipated to the environment [5]. The 

perception of the thermal environment is mainly influenced by six primary factors: air temperature, 

velocity and relative humidity, temperature of surrounding surfaces, clothes and a person’s activity. 

Additionally, there are further physical, physiological and other factors, that influence one’s thermal 

comfort, as depicted in Figure 1 [6]. Fanger developed a thermal comfort model based on a heat 

balance model of the human body. Using the result of climate chamber experiments, he developed an 

equation that can be used to predict the thermal comfort of a group of people depending on the six 

main primary factors. The resulting PMV is used in several national and international standards [5–10].  

 

Figure 1 Primary, secondary and additional factors influencing thermal comfort [6] 

Adaptive comfort is based on an individual’s conscious and unconscious adaptation to her thermal 

environment in order to restore their thermal comfort. As a consequence of adaptation, an individual’s 

comfort temperature may change. The main influencing factor found is the outdoor air temperature, 

both present and the running mean temperature of a week [5,11–14]. 

2.2 Machine Learning 

The goal of machine learning is to build computer systems that automatically improve with 

experience[4]. A machine is thus given the ability to learn without being explicitly programmed [15].  

Machine learning algorithms can be classified into three main learning types: supervised learning, 

unsupervised learning and reinforcement learning. There are also hybrids between the learning types, 
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like semi-supervised learning. Figure 2 gives a graphical representation of these types including their 

typical output data type, the used method and an application example.  

 

Figure 2 Types of Machine Learning, adopted from [4] 

In supervised learning, the learning system is fed with inputs and the corresponding desired outputs, 

the so called labelled data or training data. Depending on the type of label the learning approach 

differs. For continuous output data, one uses regression, while for categorical outputs, classification is 

used [4,15–17]. Reinforcement learning evolves through interaction with its environment. Through 

feedback from the environment the learning machine receives an evaluation about a chosen action. 

Using a mix of exploiting existing knowledge and exploring the unknown the agent tries to maximize its 

reward. This process is suitable in situations where no learning data is available or updates occur in 

short intervals [4,17–19]. 

3. Literature Review 

Previous work related to machine learning in building energy systems shows that the integration of 

advanced control systems into existing HVAC systems is feasible [20], with all advanced control 

systems outperforming classic controllers [18,21–25]. However, in some cases, it proved to be difficult 

to properly estimate the real performance of classic controllers, since only few of them are configured 

correctly [23,26]. It may well be that less advanced methods are more effective than the most recent 

tools, especially in cases where correlations are simple [27]. It can be observed that the 

implementation of the control systems is difficult: a proper implementation requires a high level of 

expertise and the demand on computational power for real time application is still high, and some of 

the methods used require extensive sensor networks [22,24,25,28–32]. The learning process is 

another issue hindering the spread, as the learning periods are still fairly long, making big sets of 

learning data a necessity. Complete learning under operation is not yet an option, as the impact on the 

system performance would be too high [18,22,25,28,30,31,33–35].  
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4. Methodology 

Using supervised and reinforcement learning in Matlab, a tool to predict the comfort temperature of 

individuals dependant on weather conditions shall be developed. Data from a German office building 

is used to train and test the tools. The setpoint predictions provided by the tools are used in a building 

simulation of a simple office model to evaluate its impact on the energy consumption. 

The PMV’s main parameters are used as an orientation to develop the comfort temperature predictor. 

The running mean temperature is assumed as a replacement for the clothing value and the metabolic 

rate used in the PMV, with a minimum set to 10 °C [5]. Relative humidity measurements from within 

the room cannot be directly used. As indoor air temperatures usually lie within a limited range of 

temperatures it is fair to assume a relatively direct link to the outdoor vapour pressure if no 

humidification is used. In moderate climates, there may also be a direct link between outdoor and 

indoor relative humidity, which is therefore also considered as an alternative to the vapour pressure. 

Radiation data is rarely measured. As an approximation, the use of cloudiness, supplied by a nearby 

public weather station, as an indicator for the incoming irradiation and as an indicator for (perceived) 

likelihood of rain and the respective choice of clothes is suggested. Alternatively, daily sunshine hours 

are considered. The air velocity is not implemented. It is assumed that in general air speeds will not be 

high enough to cause a user discomfort. From intuition, the daily maximum and minimum temperature 

may also have an influence on the comfort temperature and are thus considered for testing. 

All temperature setpoints used have been collected at the central building of the savings bank 

Kreissparkasse Göppingen in Germany (48,7 ° N, 9,6 ° E). Hourly temperature setpoints are available 

for a total of 976 days. The data derives from 35 rooms with individual temperature control spread 

over the first to the fourth floor of the building. Weather data collected directly on site is small and only 

includes the outdoor temperatures and relative humidity. As it does not contain all data deemed 

necessary the use of onsite data is discarded. The German weather service (DWD) provides historical 

weather data from weather stations all around Germany through the Climate Data Centre (CDC). The 

closest station to Göppingen that provides the required data is located at Stuttgart-Echterdingen 

(48,7 ° N, 9,2 ° E DWD-station ID 4931) [36]. 

Since complete weather data sets close enough to the building are only available as daily averages, 

the temperature setpoints are averaged over a day. A day is only considered suitable for use if it 

includes at least eight hourly temperature setpoints, else the day is excluded from the dataset.  

The Mathworks’ Matlab 2017a contains two toolboxes suited for machine learning applications: the 

Statistics and Machine Learning toolbox and the Neural Network toolbox. The Machine Learning 

toolbox contains several tools that enable the set-up of regression learning tools based on input and 

output parameters. It comes with a total of 19 standard tools which can be divided into linear 

regression, decision trees, support vector machines, bagged and boosted trees, and Gaussian 

process regression (GPR). As a first step, all tools are run with standard conditions to estimate their 

overall feasibility. The Neural Network toolbox enables a quick set-up of artificial neural networks 

(ANN). Different learning methods can be applied that vary in computational effort and performance. 

The Levenberg-Marquardt backpropagation is used since it is a good compromise between learning 

speed and performance. One hidden layer is used, with the number of neurons being varied between 
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nine and 60 in increments of three to find the best, non-overfitting number of neurons. The 

performance of all tools is analysed using the RMS compared to a testing data sample. To decide on 

which tools and which weather parameters to focus on, learning is performed for a sample of eight 

rooms, with two rooms from each floor. The two rooms are chosen randomly among all rooms on the 

floor. The three best performing regression tools and the three best performing neural networks are 

chosen according to their median, their lower and upper quartile, and their minima and maxima. They 

are then trained with the remaining rooms and reanalysed in comparison to a baseline scenario of 

21 °C heating setpoint and 23 °C cooling setpoint. Out of the six fully analysed tools the top three are 

chosen to vary the amount of training data fed into them. For this purpose, the whole data set is still 

fed into the trainer, but the amount used for training is varied between 5 % and 80 % in steps of 5 %, 

with the remainder being equally split into use for validation and testing.  

Matlab has no standard tools for reinforcement learning so it is necessary to develop a specific 

algorithm for this purpose. Since a continuous output is required from a set of up to six continuous 

inputs a lookup table for the value function is deemed impractical. Instead, a function approximation 

using artificial neural networks is performed. The neural network is based on the results from the 

supervised learning approach, as it is already optimized in size for the problem at hand. The error 

between the prediction and the desired setpoint is used as a penalty function and is directly used to 

improve the value function through gradient descent based error backpropagation for the ANN. All 

nodes are sigmoids.  

A year worth of data, i.e. 365 data points, are used for training, while the remainder is used for testing. 

A discounted learning rate is tested for reducing overfitting, while the reuse of samples is tested to 

decrease the amount of data needed for the targeted performance. The discount rate for learning is 

varied between 0,5 % to 2,5 % and the number of sample reuses is varied between one and ten 

repetitions. After individual testing, both methods are combined to evaluate their combined 

performance improvement. Three target values are analysed: Time until RMS below 2 °C, time until 

RMS below 1,5 °C and minimum RMS.  

A model of a single office is used to evaluate the energetic performance of a supervised and a 

reinforcement learning tool. The exterior constructions are according to the German energy saving 

regulation (Energieeinsparverordnung, EnEv) [37]. The office is 4,0 m deep and 2,5 m wide, with a 

height of 2,8 m. The window is 2,1 m wide and 1,7 m high. The three internal loads are one occupant, 

electric equipment and lighting. The occupant performs work at the desk, leading to an activity level of 

115 W. The office is equipped with a laptop and two additional screens accounting for a load of 

120 W. Lighting is supplied by LEDs, adding up to 14 W. The office is occupied from 8 am to 12 pm 

and from 1 pm to 6 pm on weekdays and there is no occupation during weekends. The electric 

equipment and lights are turned on during these periods as well. Air conditioning is modelled using the 

EnergyPlus Ideal Loads Air System template, which supplies conditioned air under idealised 

conditions. The system’s heating and cooling capacity is limited to 400 W to represent the limitations 

of state-of-the-art active ceilings used for individual temperature control in offices. The HVAC system 

is available two hours before and after occupation starts. 

  



6 
 

5. Results 

Table 1 shows all available weather parameters and a respective code number that is used for quick 

referencing and in graphics. Code number 1 is internally used for the time stamp and thus not used for 

external coding.  

Table 1 Weather Parameters 

Weather Parameter Code Number 

Average outdoor air temperature 2 

Vapour pressure 3 

Cloud cover 4 

Relative humidity 5 

Sunshine hours 6 

Maximum outdoor air temperature 7 

Minimum outdoor air temperature 8 

Running mean air temperature 9 

5.1 Neural Networks 

The top three combinations gathered from training with eight sample rooms are trained with the 

remaining 27 rooms. The resulting boxplots of the RMS are shown in Figure 3, including a boxplot for 

the reference scenario. All neural networks have a median RMS of 1,12 °C and a maximum of 

1,93 °C, 1,99 °C and 1,95 °C from left to right. All three outperform the reference scenario with its 

median RMS of 2,11 °C and a maximum of 2,75 °C.  

 

Figure 3 Neural Network Top 3 Total RMS for all rooms, compared to reference scenario 

5.1.1 Required training data 

It is reasonable to perform an analysis of the required amount of data to reach the target value. For 

the parameter combination 2-4-5-7-8-9 the size of the training set is varied from 5 % to 80 % of the 

available data set. Figure 4 shows the result. 

The median shows a logarithmic decay, with a median RMS of less than 2 °C being achieved with 

15 % of the available data being used for training, equalling 131 data points. At roughly 30 %, or 261 

data points, the medians go below 1.5 °C. The decay of the medians starts to become small at around 

50 % to 60 %. As a conclusion, at 15 % the use of neural networks becomes generally possible, and it 

starts to become feasible at 40 %, equivalent to 348 data points. It can also be concluded that using 
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an overall larger data set improves the functionality of a neural network to predict indoor temperature 

setpoints. 

 

Figure 4 Neural Network 245789 - 33 Total RMS over training data size 

5.2 Regression Learners 

Figure 5 shows the RMS for three best-performing tool-parameter combinations in comparison to the 

reference scenario. The median for GPR Exponential (18) is 1,15 °C and the maximum 1,98 °C, for 

GPR Matern 5/2 (17) the values are 1,16 °C and 2 °C respectively and for GPR Rational Quadratic 

(19) 1,15 °C and 2 °C respectively. The medians of all tools are below the threshold value of 2 °C and 

the maximum RMS are roughly equal to the threshold. All analysed tools clearly outperform the 

reference scenario. Overall, the use of regression learning tools is viable with the amount of data 

available.  

 

Figure 5 Regression Tool Top 3 RMS for all rooms, compared to reference scenario 

5.3 Reinforcement Learning 

Since the supervised learning tools comply with the conditions of a RMS below 2 °C and outperform 

the baseline scenario, the performance of reinforcement learning tools is evaluated. 

Supervised learning methods are often used for function approximation of the value function in 

reinforcement learning [38]. ANNs have shown good potential for comfort temperature learning in the 

supervised learning approach, so that their application in reinforcement learning is only logical. The 

use of the right error function is essential for a good performance of reinforcement learning tools. The 

root mean squared error, the mean squared error and a linear error are tested. The RMS-error 

function outperforms the half-MSE for the used learning rates which are generally standard in machine 
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learning, and seems slightly more stable than the simple error. The RMS-error function is used for 

further improvements on the reinforcement learning tool.  

An iteration through learning rates of 0,01, 0,03 and 0,05 and discount rates of 0,995, 0,985 and 0,975 

and their combinations shows an optimal behaviour for the combination of a learning rate of 0,03 and 

a discount rate of 0,975. The result for this combination is depicted in Figure 6. With five sample 

reuses, one obtains a good compromise between learning speed, stability and very low overfitting.  

 

Figure 6 Reinforcement Learning: Discounted Sample Reuse - Learning Rate 0,03, Discount Rate 0,975 

5.4 Energetic Evaluation 

The energetic performance of the tools is separated into heating and cooling. The reinforcement 

learning tool is able to outperform the baseline scenario for heating, while the performance of the 

supervised leaning is on par with the baseline scenario. Given the differences between the setpoints 

used in the building simulation and the actual user inputs it could be concluded that the reinforcement 

learning tool would require more energy in a real application than the simulation implies, as the 

setpoint temperatures are on average too low compared to actual user input. The baseline scenario on 

the other hand has too high setpoints, implying overheating. A very well-tuned supervised artificial 

neural network may be able to reduce overheating and therefore reduce the heating load. The cooling 

load for the machine learning tools gathered from the building simulations is approximately twice as 

high as the load for the baseline scenarios. However, the cooling setpoints of the machine learning 

tools match the user inputs decently well, while the baseline scenario was roughly 2 °C too warm in 

the transition seasons spring and autumn, and 3,5 °C too warm in summer, compared to user inputs. 

This implies a drastically higher energy consumption in a real application for the baseline scenario as 

compared to the simulation. As there is no over-conditioning when using the baseline scenario, it can 

be concluded that the machine learning tools cannot provide any energetic benefit for cooling. 

Especially when using activated building components which are thermally slow, they should help to 

increase user comfort due to the increased precision in predicting comfort temperatures.  

6. Conclusion, Outlook 

In summary, both supervised and reinforcement learning tools could predict individual comfort 

temperatures based on weather parameters with the desired precision and their predictions being 

closer to user desires than the currently common heating and cooling setpoint temperatures. Artificial 

neural networks may be able to reduce overheating, thus decreasing the overall heating load, while 

machine learning tools in general might help to increase indoor comfort during the cooling period. 
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However, this potentially comes at the cost of increasing the cooling load, depending on user 

behaviour.  

A deeper analysis of the topic seems worthwhile, considering the impact setpoint prediction may have 

on the flexibility and efficiency of building energy management systems, especially in combination with 

other advanced control techniques such as occupancy prediction and (model) predictive control. 

Further tests need to be performed using a wider range of data, from varying locations to be able to 

give a statement about the general applicability. As the data basis for this work was coming from a 

bank the comfort temperatures throughout the year, while varying, lay within a certain range, 

especially since the choice of clothing is highly limited. Predicting comfort temperatures in workplaces 

with a larger possibility of clothing options may prove to be more challenging, and would thus prove to 

be a good benchmark for the tools. Apart from more theoretical analyses real life implementations are 

an important next step. They would enable insights into actual changes in energy consumption and, 

more importantly, create user feedback. As shown by Yang and Newman user satisfaction and 

willingness to interact with learning machines is an important factor towards their performance [39]. An 

advanced implementation would later also test the interaction of comfort prediction, occupation 

prediction and model predictive control. Implementing the tools within an existing framework would 

require an interface that enables docking into it. Considering that more and more companies are 

moving into the market, a common standard would be useful [40]. 
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